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FOREWORD

The work covered by this report was done in the System Dynamics Branch, Aeronautical 
Research Laboratory, under Project 7060, “Flight Dynamics Research and Analysis Facility”. Mr. 
Paul W. Nosker is Project Engineer. This study is part of a continuing program to determine 
optimum methods of simulation and analysis of the dynamics of air weapon systems. The general 
subject of quaternions as applied to coordinate conversions has been under investigation for 
approximately two years, though the bulk of the work reported here was accomplished during the 
last six months of 1957.
The author wishes to express his appreciation to Mr. Robert T. Harnett and others of the Analog 
Computation Branch of the Aeronautical  Research Laboratory for assistance in the analog 
simulation portion of the study.

Note: This is a re-creation of the original report, done in 2005-6 using a scanner, OCR software and a word 
processor, and with the following differences of detail from the original:
• Only sections I to V and Appendices A and B are included
• The general appearance (e.g. font types and sizes) is similar to the original report but not identical;
• The page breaks occur at different places;
• Spelling and punctuation have been corrected in a few places;
• Text that I judge to be incorrect or incomplete has been amended (shown in brackets like [these]);
• Some corrections to the mathematics have been made (e.g. 2 sign changes in equation (12)).
• Some footnotes have been added for clarification and to indicate the mathematical corrections made. These are 

indicated by my initials [OW]
• Most footnotes are numbered instead of being indicated by asterisks;
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SECTION I

INTRODUCTION

The problem of motion of a rigid body and the associated one of coordinate conversion are 
very old ones in the field of classical dynamics. Significant results, dating from the time of Euler 
(1776) through the introduction and application of matrix methods by Cayley and Klein and 
others in the last half of the nineteenth century, brought the matter to such a satisfactory state that 
no significantly new methods or approaches have been found necessary. The development of 
modern computing  machinery makes necessary a re-examination of the various methods from 
the standpoint of their utility in computational devices. It is not necessarily true that methods 
which have proven their convenience in the largely analytical manipulations of classical 
mechanics should prove to be best adapted for numerical or analog computation. Quaternions fell 
into disuse among physicists about the turn of the present century because matrix and vector 
methods had proved more useful in the types of investigation then being conducted. The purpose 
of the present paper is to show that the quaternion approach to coordinate transformation does 
offer real advantages in the analog simulation of rigid body motion. In recent times Deschamps 
and Sudduth1 have suggested an application for digital computation, and Backus2 has proposed 
them for analog simulations, but in general quaternions are little known among those engaged in 
simulation of aircraft motions.

The coordinate conversion problem in aircraft and missile simulation is different at least in 
emphasis from that of classical dynamics. It might be well to state the problem which is of 
interest and to which the methods explained later will be applied. A missile or aircraft may be 
considered as a moving coordinate system. Various vectors must be transformed into this 
coordinate system or out of it into some inertial systems. Integrating the equations of motion of 
the airframe can be made to yield the three components of the coordinate system’s angular 
velocity vector. From the X, Y and Z components (P, Q, R) of this vector in the moving system, 
it is desired to keep track of the orientation of the coordinate system in such a way that vectors 
may be transformed in either direction. This means an integration of angular rate to determine 
angular position.

Fundamental to this procedure is a consideration of how the orientation of the coordinate 
system is to be specified. During the history of the subject, various methods of doing this have 
been put forward. All the most useful ones fall into three categories: Euler angles, quaternions, 
and direction cosines. Of these, the first and last are probably the most familiar to modern 
readers. In the Euler angle method, the orientation is expressed as the result of three rotations 

1 Deschamps, G. A. and W. B. Sudduth, Federal Telecommunications Laboratories, Nutley, New Jersey, 
Case 26-10707, November 1955
2 Backus, George, Rigid Body Equations - Euler Parameters, Technical Note 6, Advisory Board on 
Simulation, University of Chicago, November 1951
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about each of three axes, the rotations being made in a specific sequence. The physical 
interpretation of a quaternion is a rotation through some angle about some specific fixed axis. The 
nine direction cosines are simply the cosines of the angles between each of the axes in the 
moving system with each of the axes of the fixed system. Principal attention here will be given to 
the quaternion, or four-parameter system. It was first introduced by Euler in 1776, as a result of 
spherical trigonometry considerations. The elegant quaternion formulation was invented by 
Hamilton in 1843 as a new kind of algebraic formalism. A matrix formulation was devised by 
Klein for use in gyroscopic problems and, in this formulation, is usually known as the Cayley-
Klein parameters. Each of these three different approaches to the four-parameter system has its 
own advantages. It has been decided to present at least an outline of all three here. There are two 
reasons for this: first, there are some propositions which are more easily shown by one 
development: second, it seems probable that when the reader is offered a choice of method, he 
will reach an understanding sooner if he can select the method most nearly consonant with his 
own background.

It will become apparent that this subject presents something of an expositional problem. In 
order to reach the desired ends, it has been decided to assume that the reader has a knowledge of 
matrix methods, especially as applied to coordinate conversion in three-dimensional space. As a 
compromise, a brief introduction to the subject is given in Appendix A, though a more 
satisfactory treatment is given by Goldstein*. In this report the term “quaternion” has been used to 
represent the four-parameter method in general. In other cases, it is necessary to use the word to 
distinguish Hamilton’s development from the others. It is hoped that confusion may be kept to a 
minimum.

There are many different techniques used in present-day aircraft simulations to solve the 
coordinate conversion problem. The technique is usually adapted to the special requirements of 
the problem at hand. If most of the rotation takes place about one axis, or if only the gravity 
vector is to be handled, or if the airframe’s rotation is otherwise restricted, valuable 
simplifications may be effected in the analog equipment required to represent the conversion. It is 
not the present purpose, however, to investigate all these possibilities. Consideration will be 
given only to the most general and unrestricted case: that of several complete revolutions about 
any or all axes. This immediately excludes the Euler angles because of the singular point. The 
advantages of Euler angles are such, and their popularity is so pervasive, however, as to warrant 
keeping them in mind. Accordingly, Appendix B gives a brief outline of the Euler Angle system 
most commonly used in aircraft work, and at appropriate points, comparisons will be made of 
them with quaternions and direction cosines. In making such comparisons, that form of Euler 
angle instrumentation whose capabilities most nearly equal those of the quaternion scheme will 
be assumed. This form has been discussed at some length by Howe3 and his figures and results 
will be used for comparison. In Howe’s method, the extent and direction of rotation is 

* Goldstein, Herbert, Classical Mechanics, Addison Wesley Press, Cambridge, Mass., 1950.
3 Howe, R. M. and E. G. Gilbert, A New Resolving Method for Analog Computers, WADC Technical Note 55-468, 
January 1956.
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unrestricted except for the inevitable singular orientation, and he shows that even this leads to 
less practical difficulties than one might expect.

It is valuable to keep the Euler angles in mind, but the quaternion method must really stand or 
fall on its comparison with direction cosines. It has in common with direction cosines the 
capability of handling completely unrestricted rotations. Accordingly, considerable attention has 
been devoted  to the direction cosine method in this report. Both a theoretical error analysis and a 
simulation program were done for the cosines in order to provide the most complete possible 
basis of comparison. They have been done before, but it is difficult to compare results obtained 
by different investigators on different computing equipment. An attempt was made here to keep 
the conditions as nearly comparable as possible. Of all the material contained herein, no 
originality is claimed except for the quaternion error analysis and simulation. Even here, no new 
techniques were used, with the possible exception of the method of handling multiplier errors. It 
was felt necessary, however, to include the remaining material in order to introduce and place in 
context this probably unfamiliar subject.
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SECTION II

THE EULER PARAMETERS

The earliest formulation of the four-parameter system was given by Euler in 1776, though the 
oldest treatment generally available today is probably that of Whittaker4. It is an essentially 
geometrical development, but will not be presented as such here. The principal results may be 
demonstrated with much less labor by use of matrices.

Central to the development of these parameters, and indeed to the four-parameter methods in 
general, is the proposition known as Euler’s theorem, which may be stated as follows: any real 
rotation may be expressed as a rotation through some angle, about some fixed axis. In other 
words, regardless of what the rotation history of a body is, once it reaches some orientation, that 
orientation may be specified in terms of a rotation through some angle (which can be determined) 
about some fixed axis.

The truth of this proposition is not intuitively obvious, but in any case, it must be shown. 
Consider a transformation matrix (A). No restrictions are put on (A) other than those which exist 
for all orthogonal transformation matrices (see Appendix A). Another way of stating Euler's 
theorem is to say that for every matrix5 (A) there exists some vector R  whose components are 

the same before and after application of (A); in other words there must be some R  such that

( ) RRA = (1)

for any (A). If the components of R  are designated X, Y and Z, the elements
of (A) by amn, then Equation (l) may be written
















=

































Z
Y
X

Z
Y
X

aaa
aaa
aaa

333231

232221

131211

(2)

If this matrix equation is expanded in components, a set of linear homogeneous equations results:
(a11-1)X + a12Y + a13Z = 0

a21X + (a22-1)Y + a23Z = 0 (3)

a31X + a32Y + (a33-1)Z = 0

A necessary and sufficient condition for existence of a non-trivial solution is that the determinant 
of coefficients be zero. Therefore, it is necessary to show that 

0
1aaa

a1aa
aa1a

333231

232221

131211

=
−

−
−

. (4)

4 Whittaker, E. T. Analytical Dynamics, Fourth Edition, Dover Publications, N. Y., 1944
5 Orthogonal transformation matrix [OW]
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This may easily be done making use of the properties of an orthogonal transformation matrix 
developed in Appendix A. If the above equation is expanded,

(a11a22a33+a12a23a31+a21a32a13-a31a13a22-a21a12a33-a32a23a11-1)
+(a11-a22a33+a23a32)+(a22-a11a33+a13a31)+(a33-a11a22+a21a12) = 0 (5)

The first term vanishes in consequence of the fact that the determinant of the transformation 
matrix must equal unity (Equation (156)), and the last three terms vanish from the orthogonality 
conditions6 of Equation (162).

 Thus, it is proved that Equation (4) is an identity for any orthogonal (A) and that there exists 
some vector R which is unchanged by the transformation. This proves Euler's theorem.

Since it has been shown that it is possible to express any rotation as a single rotation about 
some axis, it is possible to make use of the equivalent rotation to specify orientation. Consider 
two coordinate systems X Y Z and X' Y' Z'. The X Y Z system is assumed to be fixed in inertial 
space, and X' Y' Z' is moving in some arbitrary manner, though both coordinate systems have the 
same origin. Assume that initially the two systems are coincident. Then the X' Y' Z' system is 
rotated through an angle µ about an axis which makes angles α, β, γ with the X, Y, Z, axes 
respectively. It will be noted that this axis of rotation makes the same angles α, β, γ with the X', 
Y', Z' axes also. It is now necessary to express the transformation matrix in terms of the quantities 
µ, α, β and γ.

In order to do this, use is made of an additional coordinate system, Xr Yr Zr, which is fixed in 

the X Y Z system. The Xr  axis lies along the axis of rotation, and the Yr axis is restricted to the 
XY plane. This would give rise to difficulty if the Z axis is the axis of rotation, but in that case, 

the Yr axis could be confined to the XZ plane or the YZ plane, and the final result would be 

unaltered. At any rate, with the choice indicated, the Yr axis is always perpendicular to the Z axis. 
Now the rotation through the angle µ is a rotation through µ about the X axis, so 'the rotation is a 

very simple one in the XrYrZr system. Accordingly, the rotation of the X'Y'Z' system through the 
angle µ may be viewed as the result of three rotations: (1) rotation of the X'Y'Z' system into 

coincidence with the XrYrZr system; (2) rotation through the angle µ about the Xr axis; (3) the 

reverse of (1) to restore the original separation of the X'Y'Z' and XrYrZr systems. The matrix for 
each of these transformations will be developed, and then the three may be multiplied together to 
express the total transformation.

First, the transformation into the XrYrZr system will be considered.  α, β and γ are the angles 

between the new Xr axis and the fixed X, Y and Z axes.

Thus, it is seen from Equation (125) that a11, a12, and a13 are immediately fixed. One other 

cosine may be established. Recall that the Yr axis is perpendicular to the Z axis. This means that 
a23 = 0. Thus the matrix of the first rotation is partially established.

6 1, 5 and 9 [OW]
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( )














 γβα
=

333231

2221

aaa
0aa

coscoscos
A (6)

Applying the orthogonality conditions7, it is possible to deduce that the other elements are

( )
















γ±γβγα
γα±γβ

γβα
=

sincotcoscotcos
0csccoscsccos

coscoscos
A



 (7)

The ambiguities in sign may be resolved by making use of the requirement that the matrix 
above must reduce to the identity matrix when α becomes zero. The result is

( )
















γγβ−γα−
γαγβ−

γβα
=

sincotcoscotcos
0csccoscsccos

coscoscos
A (8)

The second rotation, through the angle MU, about the Xr axis is simply

( )
















µµ−
µµ=

cossin0
sincos0

001
R (9)

The last of the three rotations is the inverse of (A) or (A)-1 . Thus, the general transformation is 
the result of all three, called (B). It is given by

(B) = (A)-1(R)A) (10)

This is a similarity transformation, and, among other things, the spur (sum of the diagonal 
elements) of a matrix is invariant under a similarity transformation, i.e.,

b11 + b22 + b33 = 1 + 2 cos µ (11)

so the angle of rotation may be obtained directly from the diagonal elements of the 
transformation matrix. Carrying out the operations of Equation (10) gives8

( )































γ−
α−

γβ
β+

γα

α+
γββ−

γ−
βα

β−
γα

γ+
βαα−

=

µ
µµ

µ

µµ

µ

µµ

µ
µ

µµ

µ

µµ

µ

µµ

µ
µ

2
2

2

22

2
2

22

2
2

22

2
2

2
2

2

22

2
2

22

2
2

22

2
2

2
2

2

sinsin21
)coscossin

coscos(sin2
)coscossin

sincos(cos2

)coscossin
coscos(sin2sinsin21

)coscossin
coscos(sin2

coscossin
sincos(cos2

)coscossin
coscos(sin2sinsin21

B (12)

If the following substitutions are made,

2222 cos,sincos,sincos,sincos µµµµ =χγ=ζβ=ηα=ξ (13)

7 6 of the 12 conditions [OW]
8 "-" changed to "+" at start of 2nd line of elements (1,2) and (2,3). [OW]
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the matrix of (12) becomes

( ) ( )
( ) ( )
( ) ( ) 
















χ+ζ+η−ξ−ξ χ−η ζη χ+ξ ζ
ξ χ+η ζχ+ζ−η+ξ−ζ χ−ξ η
η χ−ξ ζζ χ+ξ ηχ+ζ−η−ξ

=
2222

2222

2222

22
22
22

B (14)

These four quantities are called the Euler parameters9. It may be seen from

their definitions that they obey the relationship
12222 =χ+ζ+η+ξ (15)

so they are not all independent. Also, none may lie outside the range ±1.
If the quantities µ, α, β and γ are known, it is a simple matter to compute the Euler parameters 

and/or the transformation matrix by the method given above. If, on the other hand, the 
transformation matrix is given, it is also possible to solve for the four parameters, though 
difficulties arise. A consideration of these difficulties will shed further light on the nature of the 
Euler parameters. To begin with, it should be stated that the quantities µ, α, β and γ cannot be 
uniquely determined from the transformation matrix. The reason for this is that even though 
rotation through a certain angle, about a certain axis, will produce a definite unambiguous 
orientation, the reverse is not true. If the orientation is given, there are four separate ways in 
which it could have been obtained by rotation about a fixed axis. Possibly an example will help to 
clarify this. Assume that the rotation being considered is a rotation through an angle of + 30° 
about the + X axis. There are three other ways to get to the same position: (1) a rotation through 
-30° about the - X axis; (2) a rotation through -330° about the + X axis; (3) a rotation through 
 +330° about the - X axis. A further illustration of the possibilities is given in the table following.

χ ξ η ζ

Case 1 +cos 
2
µ

+cos α sin 
2
µ

+cos β sin 
2
µ

+cos γ sin 
2
µ

Case 2 +cos
2
µ

(-cos α)(-sin
2
µ

) (-cos β)(-sin 
2
µ

) (-cos γ) (-sin 
2
µ

)

Case 3 -cos
2
µ

+cos α (-sin
2
µ

) +cos β (-sin
2
µ

) +cos γ (-sin
2
µ

)

Case 4 -cos
2
µ

(-cos α) sin
2
µ

(-cos β) sin
2
µ

(-cos γ) sin
2
µ

The first two cases lead to the same Euler parameters, and the last two lead to a different set 
which are the negative of the first. All four sets lead to the same transformation matrix.

The relationship between Euler parameters and direction cosines may be derived by equating 
terms in Equation (14)10. The result is

4χ2 = 1 + a11 + a22 + a33

9 “the Euler symmetric parameters”, I believe. [OW]
10 and using (15)
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4ξ2 = 1 + a11 - a22 - a33 (16)

4η2 = 1 - a11 + a22 - a33

4ζ2 = 1 - a11 - a22 + a33

These equations determine the Euler parameters except for sign. The sign must be gotten in 
another way. From comparison of terms in the matrix it is possible to show that

a31 - a13 =4χη

a12 - a21 = 4χζ (17)

a23 - a32 = 4χξ

Thus, if χ is assumed to be always positive, the signs of the others may be deduced from 
Equations (17) unless χ = 0. This is the special case of  a 180° rotation. There is an additional 
ambiguity here because the direction of the axis of rotation and the direction of the rotation are 
completely unrelated. Either a positive or a negative rotation about either the positive or negative 
axis will give the same result. For this special case, another means would have to be devised for 
defining the signs, but it hardly seems worthwhile to go into it here. It is not expected that this 
will lead to any practical difficulties.

WADC TR 58-17 8



SECTION III

THE CAYLEY-KLEIN PARAMETERS

In this development of the four-parameter System, it is found that a 2x2 complex matrix may 
be used to represent a real rotation, rather than a 3x3 real matrix. Consider such a matrix (H),

(H) = 






2221

1211

hh
hh

 . (18)

The requirement is placed on this matrix that it be unitary, that is to say the product of (H) and 
its adjoint must yield the unit matrix. The adjoint is the complex conjugate of the transposed 
matrix. In addition, it is required that the determinant of the matrix (H) have the value +1. The 
unitary condition allows ±1 for the determinant, so this is an additional requirement. The unitary 
condition may be written as







=











10
01

hh
hh

hh
hh

2221

1211
*
22

*
12

*
21

*
11  . (19)

Expanding and equating components gives
h11

* h11 + h21
* h21 = 1

h11
* h12 + h21

* h22 = 0 (20)

h12
* h11 + h22

* h21 = 0

h12
*h12 + h22

* h22 = 1 .

The second and third equations are the same, being merely complex conjugates of each other. 
The first and fourth equations have no imaginary component, whereas the second (or third) has 
both real and imaginary parts. Therefore, the three independent equations contain four conditions. 
These, together with the determinant requirement that h11h22 - h21h12 = +1 make it possible to 
determine certain relationships among the four quantities hmn. It may be shown that h22 = h11

* and 
h21 = h12

* so the matrix may be written as

( ) 





−

= *
11

*
12

1211

hh
hh

H  . (21)

The quantities h11, h12, h22 are usually referred to as the Cayley-Klein parameters. It will be 
noted that they are complex numbers. While it is convenient to use them as such in analytical 
operations (and this is the purpose for which Klein developed them) a physical computer must 
treat complex numbers in terms of their real and imaginary parts. Therefore, it is convenient to 
introduce four other quantities defined as follows:

h11 = e1 + ie2 (22)

h12 = e3 + ie4

where the e's are all real numbers, and i is the square root of -l. Using these definitions, the 
matrix (H) may be written as

WADC TR 58-17 9



( ) 





−+−
++

=
2143

4321

ieeiee
ieeiee

H  . (23)

Now consider another complex matrix (P), which has the form

( ) 





−+
−

=
ziyx
iyxz

P (24)

where x, y and z are real numbers. It will be noted that the matrix (P) is equal to its own adjoint, 
and thus is said to be self-adjoint or Hermitian. Now consider a transformation of (P) of the form

(P)' = (H)(P)(H)+ (25)

where (H)+ designates the adjoint of (H). Since (H) is unitary, (H)+ = (H)-1, so equation (25) is
(P)' = (H)(P)(H)-1 . (26)

This is a similarity transformation. It is shown in Appendix A that the determinant of a matrix 
is invariant under a similarity transformation. It can also be shown that the Hermitian property 
and the spur are both invariant under a similarity transformation. Therefore, the transformed 
matrix (P)' must have have the form

( ) 





−+

−
=

'z'iy'x
'iy'x'z

'P  . (27)

The fact that the determinant of (P) must equal the determinant of (P)' gives

x2 + u2 + z2 = x'2 + y'2 + z'2 (28)

If x, y and z are viewed as components of a vector, then Equation (28) is the requirement that 
the length of the vector remain unchanged. Equation (26) may be written







+−

−−−






−+
−







−+−
++

=





−+

−

2143

4321

2143

4321

ieeiee
ieeiee

ziyx
iyxz

ieeiee
ieeiee

'z'iy'x
'iy'x'z

. (29)

If the operations of Equation (29) are carried out, it is found that

x' = (e1
2-e2

2-e3
2+e4

2)x - 2(e1e2+e3e4)y + 2(e2e4-e1e3)z

y' = 2(e3e4-e1e2)x + (e1
2-e2

2+e3
2-e4

2)y + 2(e2e3+e4e1)z (30)

z' = 2(e1e3+e2e4)x + 2(e2e3-e1e4)y + (e1
2+e2

2-e3
2-e4

2)z .

These equations represent a linear transformation between the components of x, y and z, and 
the components of x' y' and z'. The matrix for this transformation is

( )
( ) ( )

( ) ( )
( ) ( ) 
















−−+−+
+−+−−
−++−−

=
2
4

2
3

2
2

2
141324231

1432
2
4

2
3

2
2

2
22143

31424321
2
4

2
3

2
2

2
1

eeeeeeee2eeee2
eeee2eeeeeeee2
eeee2eeee2eeee

A  . (31)

It may be shown directly that this matrix satisfies the orthogonality conditions, but it is proved 
also from Equation (28). Equation (31) shows that the nine direction cosines may be expressed in 
terms of the four e's. If Equations (22) are substituted into Equations (20) it is found that

e1
2 + e2

2 + e3
2 + e4

2 = 1 (32)
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and therefore, only three of the e's are independent. The identity of these four quantities with the 
Euler parameters is obvious. Comparison of Equations (3l) and (14) gives

e1 = χ, e2 = ζ, e3 = η, e4 = ξ . (33)

An equivalence has been indicated between the real (3x3) matrix (A) and the complex (2x2) 
matrix (H). It may be shown that this correspondence goes further. Consider the real 
transformation

( ) rB'r = (34)

and let the associated unitary complex matrix be (H)1, so that
(P)' = (H)1(P)'(H)1

+ (35)

Now consider a second transformation (A) with associated (H)2.

( ) 'rB''r =

(P)'' = (H)2(P)'(H)2
+ (36)

Substituting (34) and (35) into (36) gives

( ) 'rC''r =

(P)'' = (H)2(H)1(P)(H)1
+(H)2

+ (37)

Therefore, if (A)(B) = (C) and (H)2(H)1 = (H)3, the above equations become

( ) 'rC''r =

(P)'' = (H)3(P)(H)3
+ (38)

showing that multiplication of two real 3x3 matrices corresponds to multiplication of the two 
associated 2x2 complex matrices in the same order. Two types of quantities which correspond in 
this manner are said to be isomorphic.

It is also possible to view this process of two successive rotations in terms of the e's 
themselves. Consider one rotation defined by e1 e2, e3 and e4. After this, another rotation is 
performed which is described by e1', e2', e3' and e4'. There is some set of e's called e1", e2", e3", e4" 
which describes the final orientation after the two rotations. This combined set may be found by 
multiplying the (H) matrices of the two rotations in the correct sequence. The equation is

( ) 





−+−
++







−+−
++

=





−+−
++

=
2143

4321

2143

4321

2143

4321

ieeiee
ieeiee

'ie'e'ie'e
'ie'e'ie'e

''ie''e''ie''e
''ie''e''ie''e

''H (39)

Expanding this equation and equating components gives

e1'' = e1'e1 - e2'e2 - e3'e3 - e4'e4

e2'' = e2e1' + e2'e1 + e3'e4 - e4'e3 (40)

e3'' = e1'e3 - e2'e4 + e3'e1 + e4' e2

e4'' = e2'e3 + e1'e4 + e4'e1 - e3'e2

By use of these equations, successive transformations may be handled in terms of the e's 
directly.
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This technique may be used to determine the relationship between the e's and the Euler angles 
given in Appendix B. The (H) matrix corresponding to each of the Euler angle rotations may be 
determined, and the three may be multiplied in the correct order to synthesize the complete 
transformation. Consider first the (H) matrix corresponding to the first Euler angle, given as ψ in 
Appendix B. From Equation (179) it is seen that the transformation equations are

x' = x cos ψ + y sinψ

y' = -x sin ψ + y cosψ (41)

z' = z.

Equating coefficients of these equations with like coefficients in Equations (30) gives the nine 
relations11

cos ψ = e1
2-e2

2-e3
2+e4

2, -sin ψ = 2(e3e4-e1e2), 0 = 2(e1e3+e2e4),
sin ψ = 2(e1e2+e3e4), cos ψ = e1

2-e2
2+e3

2-e4
2, 0 = 2(e2e3-e1e4), (42)

0 = 2(e2e4-e1e3), 0 = 2(e2e3+e4e1), 1 = e1
2+e2

2-e3
2-e4

2.
These equations cannot all be satisfied unless e3 = e4 = 0. If this is true, then

cos ψ = e1
2 -e2

2, sin ψ = 2e1e2, e1
2+e2

2 = 1 (43)
Solving these equations for e1 and e2, gives

2
cose1

ψ=  ,
2

sine2
ψ= (44)

so the (H) matrix corresponding to the ψ rotation is

( )













=

















ψ−ψ

ψ+ψ

= ψ−

ψ

ψ
2

sini

2
sini

e0

0e

2
sini

2
cos0

0
2

sini
2

cos
H (45)

By an exactly similar process, it may be shown that the other two matrices are12

( )
















θθ−

θθ

=θ

2
cos

2
sin

2
sin

2
cos

H , ( )
















φφ

φφ

=φ

2
cos

2
sini

2
sini

2
cos

H (46)

Therefore, the entire transformation, which is the result of all three rotations, is

( ) ( ) ( ) ( ) ψθφ=





−+−
++

= HHH
ieeiee
ieeiee

H
2143

4321 (47)

Carrying out the indicated multiplications, and equating components gives

2
sin

2
sin

2
sin

2
cos

2
cos

2
cose1

φθψ+φθψ=

11 superscripts of e3 and e4 corrected from 3 and 4 to 2 in second equation for cos ψ [OW]
12 subscript in (H)θ corrected from (H)e [OW]
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2
sin

2
sin

2
cos

2
cos

2
cos

2
sine2

φθψ−φθψ= (48)

2
sin

2
cos

2
sin

2
cos

2
sin

2
cose3

φθψ+φθψ=

2
cos

2
sin

2
sin

2
sin

2
cos

2
cose4

φθψ−φθψ=
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SECTION IV

QUATERNIONS

The most brilliant formulation of the four-parameter method was rnade by Hamilton in 1843. 
He developed a new type of entity called a "quaternion". It is composed of four parts,

q = S + ia + jb + kc (49)

where S, a, b and c are real numbers, and the indices i, j and k are defined by the following rules;
i2 = -1 ij = -ji = k
j2 = -1 jk = -kj = i (50)
k2 = -1 ki = -ik = j

The conjugate of the quaternion q is

q* = S - ia - jb - kc. (51)

Using the laws for the indices quoted above, it may be easily shown that

qq* = q*q = S2 + a2 + b2 + c2 (52)

which is called the length or norm of the quaternion. If this norm is unity, then a special form of 
quaternion results, a versor. It is possible to make use of these to describe a coordinate 
transformation. The quantity S is called the real or scalar part of the quaternion, and ia + jb + kc 
is called the imaginary or vector part. Now assume we have a quaternion whose scalar part is 
zero. We call this a vector of components X, Y and Z,

V = iX + jY + kZ. (53)

Let us examine the operation

q*Vq = V' (54)

where q is a versor. So far there is no particular reason to expect that V' will be a vector, but this 
turns out to be the case. Equation (54) may be written

(S - ia - jb - kc) (iX + jY + kZ) (S + ia + jb + kc) = V'. (55)

When this equation is expanded. making use of the rules for indices, the result is13

V' = i {X [S2 + a2 - b2 - c2] + Y [2cS + 2ab] + Z [2ac - 2Sb]}

+ j {X [2ab - 2cS] + Y [+S2 - a2 + b2 - c2] + Z [2aS + 2cb]} (56)

+ k {X [2Sb + 2ac] + Y [2bc - 2Sa] + Z [S2 - a2 - b2 + c2]}.

This is simply a coordinate transformation whose transformation matrix is

( ) ( )
( ) ( )
( ) ( ) 
















+−−−+
+−+−−
−+−−+

2222

2222

2222

cbaSSabc2sbac2
cbaS2cbaScSab2
sbac2abcS2cbaS

(57)

The correlations with matrices derived in the two preceding sections are evidently

e1 = χ = S, e2 = ζ = c, e3 = η = b, e4 = ξ = a . (58)
13 x corrected to X (3 times). s replaced by S in (56) to (58) [OW]
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The matter of two successive rotations may be handled quite easily. Assume that first we 
transform a vector with the versor q1 ,

q1*Vq1 = V' . (59)

Next we apply the versor q2 ,

V" = q2*V'q2 = q2*q1*Vq1q2 . (60)

We now define a new vector q1q2 = q3 , and wish to find the relationship between q3 and 
q2*q1*. We define q4 = q2*q1*. It may be seen that

q2q2*q1* = q2q4 (61)

and since q2 is a versor, q2q2* = l. Therefore, Equation (61) reduces to
q1* = q2q4 . (62)

Now we apply q1 on the left,

q1q1* = q1q2q4 = 1 = q3q4 (63)

that q4 must equal the conjugate of q3, This means that
V'' = q3*Vq3 (64)

Now.observe that the equation q3 = q1q2 may be written

S3 + ia3 + jb3 + kc3 = (S1 + ia1 + jb1 + kc1)(S2 + ia2 + jb2 + kc2). (65)

Expanding this equation and equating components gives

S3 = S1S2 - a1a2 - b1b2 -c1c2

a3 = S1a2 + S2a1 + b1c2 - c1b2

b3 = S1b2 - a1c2 + b1S2 + c1a2 (66)

c3 = S1c2 + a1b2 - b1a2 + c1S2 .

These equations are identical with Equations (40) which were developed in the same 
connection by use of the Cayley -Klein parameters. Thus, the quaternion method leads to the 
same result as the preceeding developments.
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SECTION V

INFINITESIMAL TRANSFORMATIONS AND RATE OF ROTATION

The preceding sections have dealt with the four-parameter method of specifying the 
orientation of a coordinate system. As was stated in Section I, however, the prirnary interest is in 
determining the orientation from the rate of rotation through a process of integration. 
Accordingly, it is necessary to relate the rates of change of the four parameters to the rates of 
rotation of the axis system.

It was shown in Section III that an orthogonal transformation may be represented by a 
complex matrix having certain properties. It is now of interest to investigate this matrix when an 
infinitesmal rotation is performed. Let us assume that this infinitesmal rotation consists of a 
rotation through the angle Δμ, about a line which makes angles of α, β and γ with the X, Y and Z 
axes respectively. Recall that the matrix (H) may be expressed

( ) 





−+−
++

=
2143

4321

ieeiee
ieeiee

H (67)

Applying the geometrical interpretation of the e's gives

( )
















µγ−µµα+µβ−

µα+µβµγ+µ

=

2
sincosi

2
cos

2
sincosi

2
sincos

2
sincosi

2
sincos

2
sincosi

2
cos

H (68)

From this, it is possible to see that the infinitesmal rotation may be represented by14

( )
















γµ∆−αµ∆+βµ−

αµ∆+βµ∆γµ∆+
=ε

cos
2

i1cos
2

icos
2

cos
2

icos
2

cos
2

i1
H (69)

since 
22

sin,1
2

cos µ∆≈µ∆≈µ∆
 .

It is expected that any matrix representing an infinitesmal rotation will differ only slightly 
from the identity matrix. This is true of the above matrix, and this may be shown more clearly by 
writing it as follows:

( ) ( ) ( )ε+=





γ−α+β−

ε+βγµ∆+





=ε I

cosicosicos
cosicoscosi

210
01

H  . (70)

Now assume that this infinitesmal rotation takes place during a small time interval Δt. If (H) is 
the matrix at the beginning of the interval, and if (H)' is the matrix at the end of the interval, then 
the time derivative of (H) may be written as

14 Missing "=" added [OW]
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( ) ( ) ( )
t

H'HlimH
dt
d

0t ∆
−=

→∆
(71)

The final matrix (H)' may also be viewed as the result of two rotations, first (H) and then (H)ε . 
In other words, (H)' = (H)ε . (H). Putting this into the above equation gives

( ) ( ) ( )H
t

limH
dt
d

0t ∆
ε=

→∆
(72)

Since (H) is not affected by the time increment, the limiting process refers only to the quantity 

( )
t∆

ε
,

( )






γ−α+β−

α+βγ
∆

µ∆=
∆
ε

cosicosicos
cosicoscosi

t2
1

t
(73)

In the limit, the quantity 
t∆
µ∆

 is simply the scalar magnitude of the angular velocity vector. If 

P, Q and R are the components of this velocity vector along the X, Y and Z axes, then evidently 

Pcos
dt
d =αµ

, Rcos
dt
d =γµ

, Qcos
dt
d =βµ

, so that

( )






−+−

+
=

∆
ε

→∆ iRiPQ
iPQiR

2
1

t
lim

0t
(74)

Therefore, from Equation (72),

( ) ( )H
iRiPQ

iPQiR
2
1H

dt
d







−+−

+
= (75)

It is also possible to show, by a straightforward limiting process, that the time derivative of a 
matrix is also a matrix whose elements are the time derivatives of the elements of the original 
matrix. Therefore15,







−+−
++







−+−

+
=





−+−
++

2143

4321

2143

4321

ieeiee
ieeiee

iRiPQ
iPQiR

2
1

eieeie
eieeie



 . (76)

Expanding and equating like components gives

2 e 1 = - e4P - e3Q - e2R,

2 e 2 = - e3P + e4Q + e1R, (77)

2 e 3 = + e2P + e1Q - e4R,

2 e 4 = + e1P - e2Q + e3R .

These are the equations which would be used to compute the four pararneters in an actual 
simulation. Now if we multiply Equation (76) on the right by the adjoint of (H) the result is

15 From (67) and (75) [OW]
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





−+−

+
+=





+−

−−−






−+−
++

iRiPQ
iPQiR

2
1

ieeiee
ieeiee

eieeie
eieeie

2143

4321

2143

4321




 . (78)

Again expanding and equating components gives

P = 2(- e4 e 1 - e3 e 2 + e2 e 3 + e1 e 4),

Q = 2(- e3 e 1 + e4 e 2 + e1 e 3 - e2 e 4), (79)

R = 2(- e2 e 1 + e1 e 2 - e4 e 3 + e3 e 4) .

Thus, if the four pararneters and their rates of change are known, the angular velocity may be 
computed.

APPENDIX A

ORTHOGONAL TRANSFORMATIONS

1. The Independent Coordinates of a Rigid Body
Fundamental to the study of rigid body motions is the determination of how many degrees of 

freedom it has. Putting it another way, the problem is to determine how many numbers one must 
specify in order to describe the orientation of the body. In order to do this, it will also be 
necessary to give a more exact definition to the term "rigid".

Assume that a body is composed of a large number of elementary particles. If the distance 
between the ith particle and the jth particle r i j is constant [for]16 all particles i and j, then the body 
is said to be rigid. If all the N particles were independent of each other, it would require 3N 
coordinates to specify them all. (Three cartesian coordinates are required to specify the position 
of a point.) The particles are not all independent, however. In fact the position of any particle in 
the body may be specified by the distances to any three non-collinear points in the body.

16 [OW: original had: “constant of all particles”]
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Figure 8
The points 1, 2 and 3 in Figure 8 have been chosen at random, the only condition being that they 
do not lie along the same [straight] line. By the rigid-body condition that ri1, ri2 and ri3 are 
constant, the position of the ith particle is fixed once the positions of the particles [1, 2 and 3 are 
fixed;]17 it follows that the position of every particle in the body is specified once the three points 
are specified. In other words, the position of the body is specified by the positions of these three 
points. Specifying three points would require nine coordinates if all the points were independent.
There are three conditions to be fulfilled by these coordinates, however, namely the prescribed 
values of r12, r13 and r23. Thus six coordinates are required to specify the position of the rigid body. 
Another way of saying this is to say that the rigid body has six degrees of freedom. These are 
frequently divided into two groups called translational and rotational degrees of freedom. The 
three coordinates used to specify the orientation of some point in the body (say the point 1 in 
Figure 8) in the xyz coordinate system, may be called the translational coordinates, while the 
three coordinates required to specify the relative orientation of the other two points could be 
called the rotational coordinates. The translational coordinates, then, are associated with the 
motion of the body as a whole, while the rotational coordinates are associated with the orientation 
of the body.

2. Orthogonal Transformations
Consider a vector r

  which has components x, y and z in the XYZ coordinate system. If the unit 

vectors along the X, Y and Z axes are called i


, j


 and k


, then it is possible to write r  as follows:

zkyjxir


++= (122)

Now assume some coordinate system X'Y'Z' which has the same origin as the XYZ system but an 
arbitrary rotation with respect to it. The components of r  in this system are x', y' and z' and the 

unit vectors along the three axes are i


', j


' and k


'. The vector r
  may also be written

17 [OW: original only had “i,” here]
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z'ky'jx'ir


++=  . (123)

The problem is to determine the components x', y', and z' in terms of x, y and z and the relative 
orientations of the two coordinate systems. This process is called an orthogonal transformation.
It is possible to write the unit vector 'i


 in terms of its components in the XYZ system, 

( ) ( ) ( ) kk'ijj'iii'i'i


⋅+⋅+⋅= (124)

Since all these vectors have unit magnitude, the dot product of two is simply the cosine of the 
angle between them.

11ai'icosi'i =⋅∠=⋅


 ,

12aj'icosj'i =⋅∠=⋅


 , (125)

13ak'icosk'i =⋅∠=⋅


 .

The same process may be applied in obtaining 'j


 and 'k


 .

( ) ( ) ( ) kk'jjj'jii'j'j


⋅+⋅+⋅=

( ) ( ) ( ) kk'kjj'kii'k'k


⋅+⋅+⋅=

so the entire set of relationships may be written:

kajaia'i 131211


++=  ,

kajaia'j 232221


++=  , (126)

kajaia'k 333231


++=  .

It is possible to apply an exactly similar process in expressing the unit vectors 'i


, 'j


 and 'k


 in 

terms of their components in the X'Y'Z' system.

'ka'ja'iai 312111


++=  ,

'ka'ja'iaj 322212


++=  , (127)

'ka'ja'iak 332313


++=  .

Figure 9 shows the two coordinate systems and the unit vectors.
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It is now possible to determine the components of the vector r

  in the X'Y'Z' coordinate system.

zayaxa'ir'x 131211 ++=⋅=


zayaxa'jr'y 232221 ++=⋅=


(128)
zayaxa'kr'z 333231 ++=⋅=



The nine quantities a11 - - a33 are called the direction cosines. They provide the means of 
transforming a vector from one coordinate system to another and therefore they specify the 
orientation of the X'Y'Z' system with respect to the XYZ system. It was developed earlier that 
only three parameters were necessary to specify the orientation of a rigid body. Therefore there 
must be six equations relating the direction cosines to each other. It will be noted that regardless 
of what rotation is applied to the coordinate system, the length of any vector must remain 
unchanged. This means that

(x')2 + (y')2 + (z')2 = x2 + y2 + z2 . (129)

Substitution of the Equations (128) into this equation shows that if Equation (129) is to hold 
identically for all values of x, y and z, then the following conditions must obtain:

a11
2 + a21

2 + a31
2 = 1  ,

a12
2 + a22

2 + a32
2 = 1  ,

a13
2 + a23

2 + a33
2 = 1  , (130)

a11a12 + a21a22 + a31a32 = 0  ,
a11a13 + a21a23 + a31a33 = 0  ,
a12a13 + a22a23 + a32a33 = 0  .

These six equations are called the orthogonality conditions. The entire set of equations may be 
written in condensed form as
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∑ δ=
i

jkjkijaa   , (131)

where δjk is the Kronecker δ-symbol which is defined by
δjk = 1 , (j = k)

δjk = 0 , (j ≠ k)  . (132)

It will be noted that the nine direction cosines, restrained by the six orthogonality equations, give 
the three independent parameters necessary to define the orientation of a rigid body. The nine 
direction cosines may be written in an array called a matrix.

( )A
aaa
aaa
aaa

333231

232221

131211

=















 . (133)

Matrices are a type of mathematical entity which may be conveniently applied to the problem of 
rigid body rotations. The rules for manipulating these quantities will now be reviewed.

3.  Properties of Matrices
The multiplication of a matrix by a vector is the first operation of interest. Symbolically, this is 
represented by

( ) rA'r  = (134)

For convenience, the x, y and z components of r  are denoted by x1, x2, and x3. Note that a vector 
r
  may be viewed as a matrix of only one column. The equation might be written
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(135)

The rule for performing this operation is

∑
=

=
3

1j
jij

'
i xax (136)

If these operations are carried out, a set of three equations is obtained which is identical with the 
set of Equations (128). This means that multiplication of a vector by a matrix using the 
multiplication rule above represents a transformation of that vector from one coordinate system to 
another. For this reason, the matrix (A) may be called the transformation matrix.
The case of two successive rotations is an important one. Let the first rotation be represented by a 
matrix (B). Then the components of a vector after this rotation will be given by

∑=
j

jkj
'

k xbx (137)

If the second rotation is represented by the matrix (A), then the components of the vector after 
this second rotation would be

∑=
k

'
kik

''
i xax (138)
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Substituting (137) into (138) gives

∑∑=
j

jkj
k

ik
''

i xbax  ,

= j
k

kjik
j

xba 




 ∑∑  .

Note that this can be put in the form of Equation 136.

∑=
j

jij
''

i xcx  , (139)

where

∑=
k

kjikij bac  . (140)

Thus the two rotations may be replaced by a single rotation (C), the elements of which may be 
computed from (140). Symbolically,

(C) = (A) (B) . (141)

It can be seen by the rule of Equation (140) that
(A) (B) ≠ (B) (A) ,

so the process of matrix multiplication is not commutative. The process of matrix multiplication 
is asociative:

(A) [(B) (C)} = [(A) (B)] (C) .

The matrix (A) was used to transform the vector r
  into the vector 'r

  .
It is of interest now to investigate the properties of the matrix (A)-1 which transforms 'r  into r  . 
The elements of this inverse matrix are designated by aij' . The inverse matrix is defined by the 
following equation.

( ) ( ) rrAA 1 
=−  . (142)

Doing the first operation, the result is

∑=
j

jij
'

i xax  . (143)

Now applying the inverse transformation to this gives

∑=
i

'
i

'
ki

''
k xax  ,

∑ ∑=
i j

jij
'

ki xaa  ,

∑ ∑ 




=

j
j

i
ij

'
ki

''
k xaax  .

Now according to the requirement that this must give back the original vector, xk'' = xk . This will 
be true only if
=========== edited to here 24 February 2009 ============
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This shows that the product of the two matrices (A) and (A)~ will be
This matrix (I) is called the identity matrix. It may be easily shown from the rules of matrix 
multiplication that for any matrix (Q),
Now since (A)" corresponds to some physical rotation, there must exist some matrix (R) which is 
the inverse of (A)" . In other words, there must be an (R) such that
 Now if (R) is applied to both sides of Equation (145), the result is
(148)
Since matrix multiplication is associative. Equation (147) may be substituted into Equation (148) 
to give
This means that
so that (A) and (A)" commute. Now consider the double sum,
This sum may be written two ways, depending on the order of summation,
Applying Equation (144) to the quantity in parentheses on the left hand side, and applying the 
orthogonality condition of Equation (131) to the quantity in parentheses on the right hand side, 
the result is
This is the important result. To form the inverse of an orthogonal matrix, the rows and columns 
are simply interchanged. Note that this conclusion holds true only for orthogonal matrices. This is 
because the orthogonality conditions were used to prove Equation (152). In general, the matrix 
formed by interchanging rows and columns is called the transposed matrix and is desig. nated by 
(A). The complex conjugate of this transposed matrix is called the adjoint matrix and is indicated 
by (A) = (A) .  A matrix is said to be unitary if it satisfies the condition,

153)
Of course these latter definitions are relatively meaningless in the case of real matrices. However, 
use is sometimes made of matrices, the elements of which are complex numbers.
It is of interest to investigate the characteristics of the determinant formed by the elemenCof a 
matrix. The determinant of the matrix (A) will be written as [A]. It will be noted that the law of 
matrix multiplication is the same as the law for multiplication of determinants. Therefore,

154)
Evidently the determinant of the identity matrix has the value unity, therefore, from Equation 
(145) it may be seen that

155)
provided that (A) is orthogonal. Since interchanging rows and columns does not alter the value of 
a determinant, [A~ ] = [A] and, from Equation (155),

156)
This means that the determinant of the transformation matrix can have only the values plus or 
minus one. If the rotation is a real one, it may be shown that +1 is the only allowable value. There 
is a certain type of matrix opera. tion which is called a similarity transformation. It is defined by

157)
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It can easily be shown that the determinant of (A) is the same as the determinant of (A)', that is to 
say, the value of the determinant of a matrix is invariant under a similarity transformation of that 
matrix. This may be shown by simply applying both sides of (157) to the matrix (B).
From this it is seen that

Since [B] is a number and not zero, it is possible to divide both sides by it and obtain the result
[A]=[A'j,                              (160) which demonstrates the proposition.
There is another set of relationships among the direction cosines which will prove to be of 
interest. Consider the set of Equations (126). If the i', j' and k' vectors are mutually perpendicular, 
then the following relationships apply:
If these vector equations are expanded in the unprimed system, and their
components equated, the result is

162)

These nine equations are really consequences of the orthogonality conditions. They present a 
means for solving for any direction cosine in terms of the others.
4.   Infinitesmal Rotations
It would be a great advantage if a vector could be associated with a finite rotation, but it turns out 
that this is not possible. For one thing, finite rotations are not commutative, nor even anti-
commutative. That is to say the order of the operations must be preserved. While this is true of a 
finite rotation, it will be shown that a vector may be associated wit'n an infinitesimal rotation and 
that therefore, the known characteristics of vectors may be used in the treatment of such rotations. 
Consider the matrix that describes a rotation thru the angle .241,, about a line which makes the 
angles a,, p. and -y, with the X, Y and Z axes respectively. This matrix may be gotten by 
substituting into the matrix (12) and dropping higher order terms. The result is
(163)
This matrix differs only slightly from the identity matrix. This may be seen more clearly by 
writing it in the following form:
(164)
This latter matrix is anti-symmetric or skew-symmetric. Notice that this matrix has only three 
independent elements, ^i, cos a. ; Ap., cos p, ;
Ap.. cos -Y. and that they are simply the three components of a vector of magnitude ^p. which is 
oriented along the axis of rotation. It will be shown that this is the vector which may be 
associated with infintesmal rotation. Let these three components be called f2., 0-,, f2, so that 
(A^l) may be written
Now if the infinitesmal rotation (A), is followed by another infinitesmal rotation (A)' , of the 
form
(166)

then the combined rotation (A). (A), is seen to be the following, if higher order infinitesmals are 
dropped:
where
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Since the second order infinitesmals were dropped, the order or sequence of the infinitesmal 
rotations is unimportant. This is one condition which is necessary if these rotations are to be 
represented by vectors. From the makeup of n" , n", , n", , it is seen that the vector representing 
the combined rotation is simply the sum of the two vectors for the single rotations.
A more conclusive demonstration of the fact that the quantities S7., Q-,, Q, are the components of 
a vector associated with the infinitesmal transformation is the demonstration that the matrix 
components transform like components of a vector under a coordinate transformation. Consider a 
matrix (A) which operates on a vector R to produce a vector R'.
Now if an additional matrix (B) is applied to this equation,
This equation is simply Equation (168) when seen in a different coordinate system, and (B) (A) 
(B)" is the matrix (A) when viewed from the different coordinate system. This is the similarity 
transformation, which has been introduced before. If a similarity transformation is applied to the 
'matrix of Equation (l65), the result is
-1

Expanding and equating components,
Thus, the infinitesmal transformation, when viewed from the other coordinate system defined by 
(B) is still nearly the identity transformation, and the vector which represents the vector 
associated with the infinesmal transformation in this new system is simply the transform of the 
vector representing the infinitesmal transformation in the other coordinate system. This shows the 
vector character of the set of elements 0., Q,, f2,.
By using this infinitesmal transformation, the rate of change of the transformation matrix (A) 
may be found in much the same way that the derivative of the matrix (H) was established in 
Section III. If (A) is the matrix at the beginning of time interval, and (A) is the matrix at the end 
of time At, then the derivative of (A) is given by
(A)' may be viewed as the rotation (A) followed by the infinitesmal transformation going from 
(A) to (A)'. In other words
where

Again, in the limit -=^- is simply the rate of rotation, and -r^- cos a = P, -^- cos p = Q, -r^- cos -Y 
= R, so the equation becomes
Expanding, and equating components gives
These are the rates of change of the direction cosines in terms of the angular velocity. Now if 
Equation (175) be multiplied on the right by the transpose of (A), the result is
Expanding and equating components gives the following relationships:
It is interesting that two different expressions are obtained for each of the velocity components. 
This is a consequence of the great amount of redundancy in the direction cosines. The 
equivalence of the two expressions for any one of the components may be shown by making use 
of Equation (l62).

APPENDIX B - THE EULER ANGLES
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It was demonstrated in Appendix A that three parameters were required to fix the orientation of a 
rigid body and hence of a coordinate system. The nin^ direction cosines do not lend themselves to 
a reduction to three simple parameters, nor do they give a very lively picture of the orientation of 
the body. Both these difficulties are overcome by use of Euler angles, the only three-par. . meter 
system in common use. In this method, a rotation is represented by thr«:» individual rotations 
taken in a specified sequence about certain specific axes. If. the literature, there is no agreement 
whatever on the order of rotations, the ax»-» about which the rotations are made, or notation. 
These are varied to suit the needs of the problem and/or the authors whim. Texts on classical 
mechanics give sets of angles defined so as to facilitate solution of the spinning top problem. The 
system presented here is the most common, though by no means the only one used in aircraft 
work.
Consider two coordinate systems initially coincident. One set of coordinates, the x, y, z, will be 
referred to as the fixed system, and the other will move w'lrh respect to it. The first rotation is 
through the angle ^ about the z' axis. This is shown in Figure 10.

The second rotation is through the angle 9 and is done about the Y' axis and the resulting axis 
system is called X", Y", Z". This rotation is shown in Figure 11.  9 is commonly called the pitch 
angle. The final rotation is done about the X" axis through the angle 4>. This is called the roll 
angle and all three rotations are shown in Figure 12. Note that all three of these rotations are in 
the positive sense. That is to say if the thumb of the right hand is placed along the axis of rotation, 
the direction of rotation is that direction in which the curled fingers point.
It is now necessary to determine the transformation matrix in terms of these Euler angles. It was 
shown earlier that successive rotations could be represented by a matrix which is a product of the 
matrices of the individual rotations. It is necessary then, only to compute the matrix 
corresponding to each of the Euler angle rotations and to multiply them together in the 
appropriate order. Note that each of the rotations is simply a two-dimensional transformation 
because in each case the rotation is about one of the moving axes and hence components along 
that axis are unchanged.
Consider first, the rotation through the angle which is shown in Figure 10. If this is viewed from 
above, the transformation of some arbitrary vector R would appear as shown in Figure 13

It can be seen from the geometry of Figure 13 that the new x' and y' components are related to the old by the 
equations
Since the rotation was about the z axis, any z component of R would remain unchanged. In other 
words, Z = Z'. This fact, together with the Equation (179) shows that the matrix for the rotation is
Now the rotation of Figure 11 may be viewed from the front along the Y" axis,
and Figure 14 is obtained.
ii
From the geometry of the above figure, it may be seen that
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In this rotation, the Y components remain unchanged so that Y" = Y". Therefore, the matrix for 
this rotation is
The final rotation may be viewed from the front, looking along the X" axis of Figure 12.
From the geometry of this figure it is seen that
In this rotation, the X components remain unchanged so that X'" = X". Therefore, the 
transformation matrix for this rotation is

In order to get the total transformation matrix which results from these three rotations, it is only 
necessary to multiply the three individual matrices in the correct order.
By comparison of this matrix with the matrix (A) it may be seen that all of the direction cosines 
and hence the complete transformation, can be expressed in terms of the three independent 
parameters ^i, 9, 4>.
Since the position of a coordinate system may be specified in terms of Euler angles, the rate of 
rotation of that coordinate system must be related to the rates of change of the Euler angles. We 
now investigate this relationship.
It is shown in Appendix A that a vector could be associated with a rate of rotation. This vector is 
along the instantaneous axis of rotation and is equal in magnitude to the rate of rotation. Thus, 
each of the Euler angle rates may be associated with a vector along the axis of rotation. Observe 
that the vector associated with the + rotation of Figure 10 is directed along the Z axis and
•

points downward if ^i is positive. Similarly, the rate of rotation due to the 9 rotation of Figure 11 
is a vector along the Y' axis, and if 9 is increasing, the vector is in the positive y' direction. 
Finally, a positive roll rotation is a vector directed along the X"' axis of Figure 12. The three 
vectors representing the threi individual Euler angles rates must be added together in order to get 
the entire rate of rotation of the system. Recall that these vectors are added according to the usua 
vector rule. The situation is shown in Figure 16 where all the Euler angle rates ar
assumed positive. Note that these three vectors are not mutually orthogonal. The vector is normal 
to the 9 vector, and the 9 vector is normal to the vector, but the  vector is not normal to the + 
vector. In any case, the three may be transformed into the X"' Y"' Z'" and added to give the entire 
velocity vector. the 4' vector has the components 0, 0, ^ in the XYZ system, so to transform this 
into the X'" Y'" Z'" system, it is necessary to apply the full transformation matrix (185) to this 
vector. If this is done, the result is
Now the vector 9 has the components 0, 9, 0 in the X" Y" Z" coordinate system.
In order to get this into the X'" Y"' Z'" system, it is only necessary to transform through the last of 
the Euler angle rotations which is defined by the matrix (184). If this is done, the result is
The vector 4>, of course, is already in the X'" Y'" Z'" system, being defined by
In order to get the entire velocity vector, it is only necessary to add the last three equations. If this 
is done, and if the total angular velocity vector is defined as "^ = "T"1 P + "J"' Q + 'K'" R, then,
These three equations may be solved for ^i, 9, 4> giving
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From these equations, it is easier to see the difficulties which arises^, when 9 approaches 90 . For 
this value of 9, both 4' s^d 4> are infinite. It is interesting to note t'hat the derivative of 9 itself 
has no such anomalies. 
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